Automation of Inorganic Assays with Flow Injection Analysis (FIA)

Fluidics Intelligently Automated

FIAlah

- Short history of Flow Analysis
- Operation principle of FIA
- Why did FIA become adopted?
- Practical benefits of FIA
- Practical instrument / method design
- Conclusions and questions

I am Dr. Ilkka Lahdesmaki

Chief Scientist You can find me at ilkka@flowinjection.com

Copyright 2018. FIAlab Instruments, INC. All rights reserved.

3

FLOW ANALYSIS

Service State

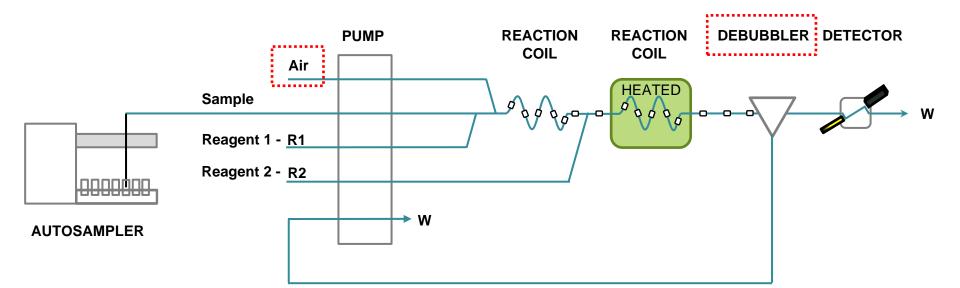
TRACE OF TAXABLE

4

Short History

- Mix sample w/ color-generating reagents
- Dosing: manual (pipettes)
- Containers: traditional glassware (beakers, flasks, tubes)
- Incubation: ambient, water bath
- Measurement: benchtop spectrometer + cuvette

Time-consuming, laborious



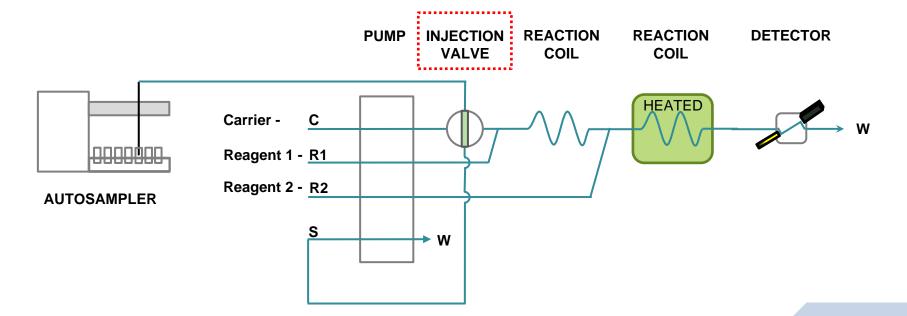
- Automated colorimetric assays
- Invented by Dr. Skeggs in 1957
- Commercialized by Technicon Corp. in the 50's and 60's
- Mix sample w/ color-generating reagents
 - ▷ Dosing: peristaltic pump & autosampler
 - Containers: glass coils & tubing, segmentation w/ air bubbles
 - Incubation: flow-through heater
 - Measurement: flow-through cuvette/flow cell

HISTORY - SEGMENTED FLOW ANALYSIS

Fluidics Intelligently Automated

Copyright 2018. FIAlab Instruments, INC. All rights reserved.

7


Invented by Dr. Ruzicka & Dr. Hansen in 1974
Commercialized by Bifok AB (later Tecator) in the 70's

- Mix sample w/ color-generating reagents
 - Dosing: peristaltic pump, injection valve
 - Containers: Teflon coils & tubing, **no air segmentation**
 - ▷ Incubation: flow-through heater
 - Measurement: flow-through cuvette/flow cell

HISTORY - FLOW INJECTION ANALYSIS

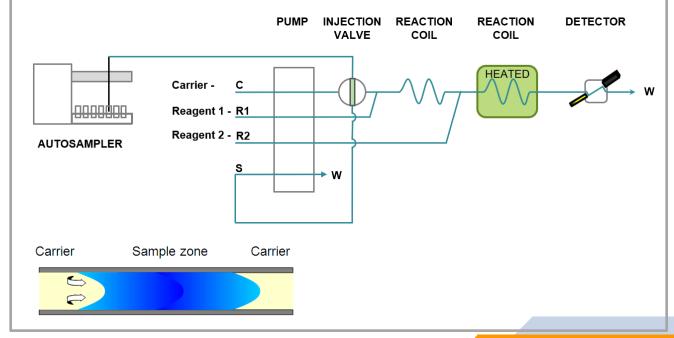
Fluidics Intelligently Automated

Copyright 2018. FIAlab Instruments, INC. All rights reserved.

9

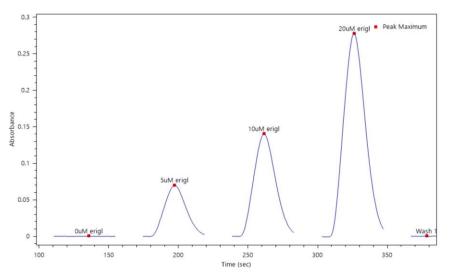
2

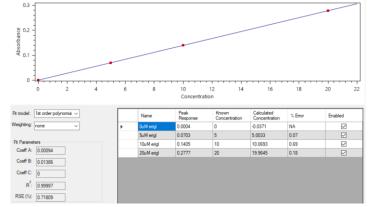
OPERATION PRINCIPLE


How does FIA work?

Principles of FIA

- ▷ Precise injection
- Controlled transit time
- ▷ Controlled dispersion





Practical outcome of controlled dispersion

▷ Signals in shape of a **peak** (like LC, IC)

3

WHY DID FIA BECOME ADOPTED?

What differentiates FIA from SFA?

Dr. Ruzicka & Dr. Hansen offered FIA concept to TechniconTechnicon's final response, as per Dr. Ruzicka:

"In brief, Technicon's patent attorney, after consulting other patent specialists, pronounced FIA non-patentable. The technical director deemed the technique impractical."*

*Dr. Ruzicka's FIA website (flowinjectiontutorial.com)

- So why did FIA survive?
 - ▷ Speed: up to 300 samples / h
 - ▷ Speed: calibration done in ~5 min from start
 - Carryover: **complete** return to baseline b/w injections
 - ▷ Use of plastic (Teflon) capillary tubing

PRACTICAL BENEFITS

How does FIA benefit operation and profitability of laboratories?

Copyright 2018. FIAlab Instruments, INC. All rights reserved.

16

Increased speed – sample throughput - "Time is money"

- ▷ High-throughput laboratories 100s 1000s of samples / day
- ▷ Every second counts for sample processing time
- ▷ Record ortho-P: 8 sec / sample

Increased speed – calibration

- Sample throughput is not the only important speed metric
- Calibration speed greatly matters as well
- Calibration done in ~5-10 min from run start (method dependent)

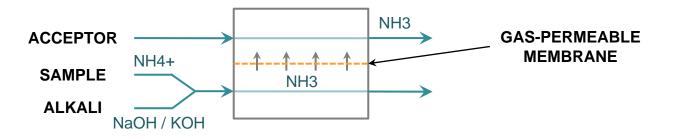
Decreased labor

- Manual measurements require large staff investment
- ightarrow Automation \rightarrow staff can be assigned to other tasks

Increased efficiency

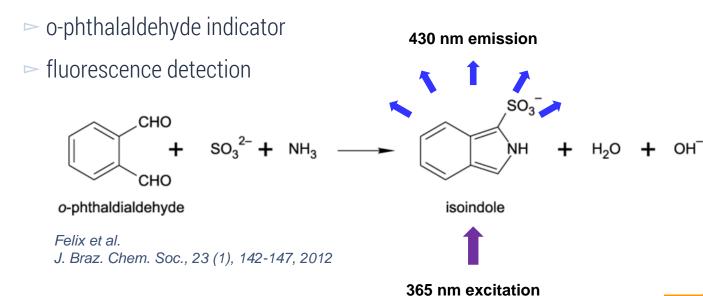
- ightarrow Automation \rightarrow staff can multitask while instrument is running
- Handle challenging sample matrices (acid, color)
 - ▷ Membrane units (gas diffusion, dialysis)

5


PRACTICAL INSTRUMENT & METHOD DESIGN

How to design them so that they work for **practical** applications on **real** samples

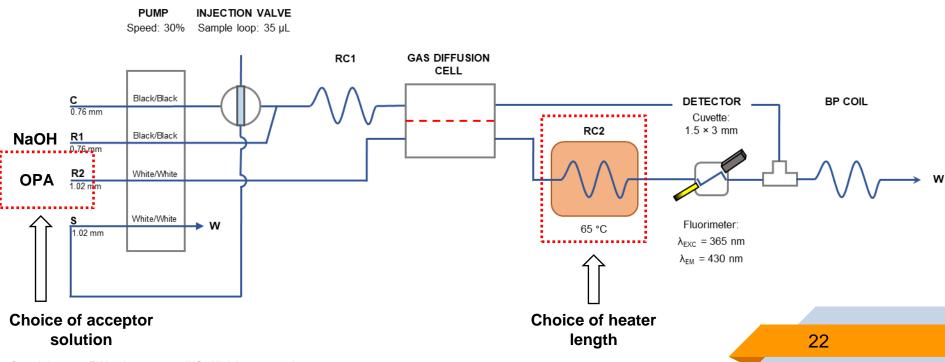
Use of gas diffusion to replace distillation



FIAlab

Fluidics Intelligently Automated

21

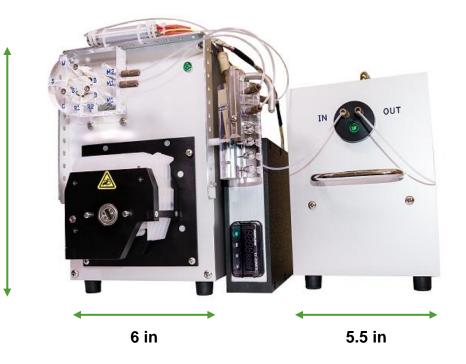

Based on:

FIAlab

Fluidics Intelligently Automated

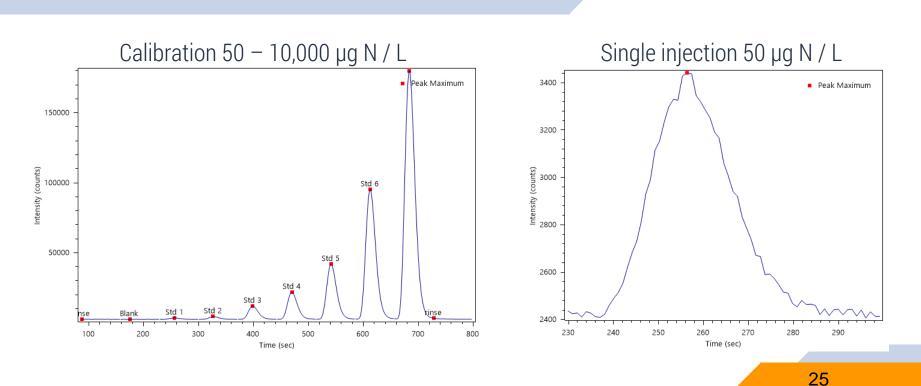
Choice of acceptor solution

- ▶ Traditionally, NH₃ acceptor is an acid solution
- ▶ Here, an alkaline solution (borate buffer) was selected
- ▶ Why: **simplification** of manifold, ability to implement on a **compact instrument**


Choice of heater coil length

- ightarrow OPA reaction is slow \rightarrow technically, would require a long heated coil
- ▶ Here, a relatively short (~70 in) coil was selected

Why: speed of calibration



Pictured:

FIAlyzer-1000 with PMT Detector

9 in

FIAlab

Fluidics Intelligently Automated

CASE STUDY: NH3/TKN BY OPA METHOD

CASE STUDY: NH3/TKN BY OPA METHOD

FIAlab[°]

Fluidics Intelligently Automated

Detection Limit	12 µg N/L	
Reporting Limit	50 µg N/L	
Range Upper Limit	10 000 µg N/L	
Spike recovery	99.3%	POTW (Anaerobic digester sludge)
	97.3%	Industrial discharge (Food process)
	109%	Industrial discharge (Metal finish)
	96.9%	River water
	102%	POTW (Final effluent, pre-UV)
	105%	POTW (Primary clarifier effluent)
Throughput	50 samples / h	

Fluidics Intelligently Automated

"Theory guides, experiment decides."

-- Dr. Izaak Maurits (Piet) Kolthoff

THANKS!

Any questions?

You can find me at sales@flowinjection.com